Polar Form

Problems Worksheet

- 1. Convert the following complex numbers. If stated in Cartesian form, convert to polar form $r \operatorname{cis} \theta$ where r > 0 and $-\pi < \theta \le \pi$. If stated in polar form, convert to Cartesian form.
 - a. z = -1 + i
 - b. $z = 1 \sqrt{3}i$
 - c. $z = 6\cos\frac{\pi}{2} + 6i\sin\frac{\pi}{2}$
 - d. $z = 8 \operatorname{cis} \left(-\frac{\pi}{6}\right)$
 - e. *z* = 2
 - f. $z = -\pi i$
- 2. Calculate the exact distance between the points $z_1 = -2\sqrt{3} 2i$ and $z_2 = \left[5, -\frac{\pi}{6}\right]$.

- 3. Let $z_1 = 2 \operatorname{cis} \frac{\pi}{3}$, $z_2 = 0.5 \operatorname{cis} \frac{5\pi}{6}$ and $z_3 = 2\sqrt{2} \operatorname{cis} \left(-\frac{2\pi}{3}\right)$. Complete the following multiplications and divisions of complex numbers using polar form. Give your answers in the form $r \operatorname{cis} \theta$ where r > 0 and $-\pi < \theta \le \pi$.
 - a. *z*₁*z*₂
 - b. $z_1 z_3$
 - C. $\frac{z_2 z_3}{i}$
 - d. $(iz_1)^2$
 - e. $\frac{iz_1}{z_3^2}$
- 4. Let $w_1 = 1 + \sqrt{3}i$ and $w_2 = -3 + 3i$.
 - a. Working in Cartesian form, determine $w_1 w_2$ and $\frac{w_1}{w_2}$.

- b. Working in polar form, determine $w_1 w_2$ and $\frac{w_1}{w_2}$.
- c. Determine $(w_1)^5$.

a. Write
$$\frac{1+\sqrt{3}i}{1+i}$$
 in polar form.

b. Hence determine the exact value of $\cos \frac{\pi}{12}$.

6. Use de Moivre's theorem to determine an expression for $\sin 3\theta$ in terms of $\sin \theta$ only.

- 7. The general complex number w = a + bi can be written in polar form $r \operatorname{cis} \theta$ where r > 0 and $0 < \theta < \frac{\pi}{2}$. Determine the magnitude and argument of each of the following in terms of r and θ .
 - a. *i*²*z*
 - b. -a + bi
 - c. 2*a* − 2*bi*

- 8. Let $w_1 = r_1 \operatorname{cis} \alpha$, $w_2 = r_2 \operatorname{cis} \beta$ and $w_3 = r_3 \operatorname{cis} \theta$. Determine the following in terms of the modulus and/or the arguments of w_1 , w_2 and w_3 .
 - a. $|w_1w_2w_3|$

b.
$$arg\left(\frac{w_1}{2w_2}\right)$$

 $\mathsf{C.} \quad \left| \frac{(w_2)^2}{3w_3} \right|$

d.
$$arg\left(\frac{4w_3(w_2)^3}{(w_1)^2}\right)$$